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Abstract
Acoustic atypicalities in speech production are argued to be potential markers of
clinical features in autism spectrum disorder (ASD). A recent meta-analysis
highlighted shortcomings in the field, in particular small sample sizes and study
heterogeneity. We showcase a cumulative (i.e., explicitly building on previous
studies both conceptually and statistically) yet self-correcting (i.e., critically
assessing the impact of cumulative statistical techniques) approach to prosody in
ASD to overcome these issues. We relied on the recommendations contained in
the meta-analysis to build and analyze a cross-linguistic corpus of multiple speech
productions in 77 autistic and 72 neurotypical children and adolescents (>1000
recordings in Danish and US English). We used meta-analytically informed and
skeptical priors, with informed priors leading to more generalizable inference. We
replicated findings of a minimal cross-linguistically reliable distinctive acoustic
profile for ASD (higher pitch and longer pauses) with moderate effect sizes. We
identified novel reliable differences between the two groups for normalized ampli-
tude quotient, maxima dispersion quotient, and creakiness. However, the differ-
ences were small, and there is likely no one acoustic profile characterizing all
autistic individuals. We identified reliable relations of acoustic features with indi-
vidual differences (age, gender), and clinical features (speech rate and ADOS sub-
scores). Besides cumulatively building our understanding of acoustic atypicalities
in ASD, the study shows how to use systematic reviews and meta-analyses to
guide the design and analysis of follow-up studies. We indicate future directions:
larger and more diverse cross-linguistic datasets, focus on heterogeneity, self-
critical cumulative approaches, and open science.

Lay Summary
Autistic individuals are reported to speak in distinctive ways. Distinctive vocal
production can affect social interactions and social development and could repre-
sent a noninvasive way to support the assessment of autism spectrum disorder
(ASD). We systematically checked whether acoustic atypicalities highlighted in
previous articles could be actually found across multiple recordings and two lan-
guages. We find a minimal acoustic profile of ASD: higher pitch, longer pauses,
increased hoarseness and creakiness of the voice. However, there is much individ-
ual variability (by age, sex, language, and clinical characteristics). This suggests
that the search for one common “autistic voice” might be naive and more fine-
grained approaches are needed.

KEYWORDS
autism spectrum disorder, cross-linguistic, speech, voice

Received: 16 August 2021 Accepted: 13 December 2021

DOI: 10.1002/aur.2661

© 2021 International Society for Autism Research and Wiley Periodicals LLC.

Autism Research. 2021;1–12. wileyonlinelibrary.com/journal/aur 1



INTRODUCTION

Atypical prosody and voice are commonly reported
aspects of the speech of people with autism, which has
been characterized as flat, sing-songy, pedantic, hollow,
inappropriate, hoarse, or hyper-nasal (Asperger, 1991;
Baltaxe & Simmons, 1975; Goldfarb et al., 1956;
Kanner, 1943; Pronovost et al., 1966). Indeed, distinctive
prosody is part of the diagnostic criteria in the ICD-10
and in the ADOS-2 assessment for autism (Lord
et al., 2009; World Health Organization, 1992) and is
indicated as one of the earliest-appearing markers of a
possible autism spectrum disorder (ASD) diagnosis (Oller
et al., 2010). These vocal factors may play a role in the
socio-communicative impairments associated with the
disorder. In addition to potentially impeding effective
communication of, for example, emotional content
(Travis & Sigman, 1998), they also generate negative
responses from neurotypical (NT) raters, even when hear-
ing as little as 1 s of speech (Grossman, 2015; Sasson
et al., 2017). These negative first impressions may have
long term effects, for example, providing a less optimal
scaffolding for socio-communicative development, or
even increasing the risks of social withdrawal and anxiety
(Fay & Schuler, 1980; Fusaroli et al., 2019, 2021; Paul
et al., 2005; Shriberg et al., 2001; Van Bourgondien &
Woods, 1992; Warlaumont et al., 2014). Given their
potential role in affecting social functioning and in
assisting diagnostic and assessment processes, it is impor-
tant to understand how these vocal atypicalities manifest
themselves across autistic people and uncover their
acoustic underpinnings. This is especially true if we want
to assess whether and how assessment and intervention
tools should be developed to target them.

It has been nearly 80 years since unusual prosody
was first reported by Kanner (1943), and there is a
growing interest in finding markers of ASD and social
functioning. Nevertheless, two reviews of the field show
that we know remarkably little about the precise percep-
tual and acoustic properties differentiating the speech of
autistic people from that of NT peers. A review of the
literature from 2003 concluded that “No study offers a
large number of subjects, matched with NT children or
adults (controlled for linguistic and non-verbal abilities).
If findings were consistent, small-scale studies would
offer pointers, but as it is these do not inspire confi-
dence” (McCann & Peppé, 2003, p. 347). A more recent
systematic review and meta-analysis (Fusaroli
et al., 2017) concluded that single acoustic features
(pitch mean and variability1) showed robust small to
moderate differences between groups. However, the
studies reviewed were noted to have small sample size,
have high heterogeneity in methods and features ana-
lyzed, largely neglect voice quality features (which are

highlighted as important by speech pathologists and
speech processing research), and leave a lingering need
for multivariate approaches to account for shared vari-
ance and interactions across features. In other words,
there is a need for a more rigorously cumulative and yet
self-correcting scientific approach to the understanding
of vocal and prosodic atypicalities in ASD. We define as
“cumulative” an approach that explicitly and systemati-
cally builds upon previous studies in terms of both study
design and statistical inference. We define as self-
correcting an approach that does not take previous find-
ings at face value, but explicitly assesses them in the light
of new studies and provides critical input for future
research (e.g., by assessing the difference that including
previous findings in the current analysis makes for the
statistical inference).

In this paper we develop such an approach. We rely
on the most recent systematic review and meta-analysis
of the field to set up the analysis of two new datasets. We
build on the recommendations there produced, and test
the replicability of updated meta-analytic results
(Fusaroli et al., 2018).

Toward a cumulative research approach

A very common approach to cumulative research is to
perform systematic reviews to map the field, and meta-
analyses of previous results to achieve a more robust
estimate of the underlying phenomena, beyond the vari-
ability of single studies. As an example, of the 17 studies
conducted between 2010 and 2016, 13 found that autistic
people had a wider pitch range, while 4 studies found the
opposite effect (Fusaroli et al., 2017). A meta-analysis
can pool the data from the different studies and perform
an overarching inference as to the underlying effect size,
and even assess whether systematic variations in study
design (e.g., monological vs. dialogic speech production)
might explain the differences in effects between studies
(Cox et al., 2021; Cumming, 2014; Nguyen et al., 2021;
Parola et al., 2020; Weed & Fusaroli, 2020). A common
critique of this approach is “garbage-in-garbage-out”: If
the studies included are too diverse, biased, or methodo-
logically problematic, the meta-analytic inference
will also be unreliable, and potentially overestimate
effect sizes (Lewis et al., 2020; Open Science
Collaboration, 2015). While a few different techniques
have been developed to assess the heterogeneity between
studies and potential publication biases (Dwan
et al., 2013), they are not a solution to the issue of more
reliably estimating the true effect, and the critique
remains valid (Rocca & Yarkoni, 2021). Systematic
reviews and meta-analyses are invaluable to get a feel for
the field and identify potential issues or directions for
research, but they should always be taken with caution as
the researchers have no control on the quality and biases
of the studies reviewed. We therefore need to critically

1Pitch is defined the fundamental frequency of the voice transformed on a log
scale to better match how it is perceived by human listeners.
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combine systematic assessments of the field with well-
targeted replications and new studies.

Building on existing guidelines

Previous systematic reviews and meta-analyses can be
used to identify current best practices, pitfalls and
blindspots, and therefore develop guidelines for new stud-
ies (Gelman et al., 2008; König & van de Schoot, 2018;
Williams et al., 2018). Indeed Fusaroli et al. (2017) iden-
tified several key areas for improvement in investigating
vocal atypicalities in ASD.

More attention to the heterogeneity of the disorder
Building on insights from Fusaroli et al. (2017), we
designed a new study based on two existing corpora of
voice data, collected in the United States and Denmark
(Cantio et al., 2016; Grossman et al., 2013). The study
involves a high degree of heterogeneity in its sample: two
diverse languages (Danish and US English) and a larger
than average sample: 77 autistic participants and 72 NT
participants, against a previous median sample size of 17.
Further, the study involves repeated measures of voice
(between 4 and 12 separate recordings per participant).
For each participant we have demographic (age, biologi-
cal sex, native language) and clinical features (ADOS
total scores, as well as the following sub-scores: Commu-
nication, Social Interaction, and Restricted and Repeti-
tive Behaviors).

More systematic use of acoustic features across studies
Second Fusaroli et al. (2017) noted that different studies mea-
sured different acoustic features with diverse methods, with-
out any explicit concern about comparing across studies.2

Within our sample we systematically extract the acoustic fea-
tures identified in the updated meta-analysis by Fusaroli
et al. (2018). This includes measures of pitch (median and
variability), and rhythm (speech rate, average syllable length,
pause number per unit of time, and pause length).3

Further, clinicians variously describe autistic voices
as hoarse, creaky, breathy, harsh or otherwise dysphonic
(Baltaxe, 1981; Pronovost et al., 1966; Sheinkopf
et al., 2000). We therefore identified in the speech signal
processing literature acoustic features thought to be

related to these perceptual qualities, for example, per-
taining to the glottal or spectral domain, fully listed in
the methods section, and in Table S1.

Of course, by expanding the acoustic features investi-
gated we risk producing a non-trivial increase in the com-
plexity of the research, and in the number of statistical
analyses required. Further, acoustic features are likely to
be related to each other, and therefore we should assess
whether all the features investigated provide independent
information, and whether it is really necessary to add
more complex acoustic measures of voice quality to the
more traditional prosodic measures. Accordingly, we
provide several analyses in the Supporting Information
including principal component and network analyses
exploring the variance shared across features (Supporting
Information S4 and S7).

Open science practices
To further promote cumulative approaches, we also pro-
vide an open de-identified dataset including demo-
graphic, clinical and acoustic features, and open scripts
to reproduce our analysis on the current dataset and rep-
licate and extend our findings on future datasets (https://
osf.io/gnhw4/?view_only=3e51ee6253d548eb836af23ed9
d01d73m; see also Parish-Morris et al., 2016; Wilkinson
et al., 2016). Note that the original speech recordings
cannot be shared as they are considered identifiable data.
We therefore—in line with our consent forms and current
data privacy regulations—only share the acoustic fea-
tures as employed in the analyses (summary statistics at
the recording and 6-s segments levels).

Hypotheses

Based on the systematic review and meta-analysis and on
current meta-scientific knowledge on replicability of meta-
analytic findings, we developed the following expectations.

Hypothesis 1 (H1). We will replicate meta-
analytic findings that autistic people have:
higher pitch mean and variability; more fre-
quent and longer pauses; no differences in
speech rate and syllable length, compared to
NT participants.

Hypothesis 1a (H1a). Effect sizes will be half
to a third smaller than previous meta-analytic
findings due to hard to correct publication bias
issues (Kvarven et al., 2020; Lewis et al.,
2020). See Table 2 for effect sizes of meta-
analytic findings.

Hypothesis 2 (H2). At least some of the mea-
sures of voice quality will be different in autis-
tic people compared to NTs, with effect sizes
comparable to prosodic measures.

2Exploration is a necessary component of research, and one should not put
standardization in front of it, to avoid getting stuck with suboptimal methods
(Devezer et al., 2019; Würbel, 2000). However, it is just as important, especially
when discussing markers of disorders, to assess whether the findings generalize to
new samples and how different methods compare to each other (Rocca &
Yarkoni, 2021).
3Speech rate is defined as the average amount of syllables per unit of time, usually
per minute, calculated including also time without actual speech, for example, pauses.
Syllable length as the average duration of a syllable, calculated dividing the total
amount of spoken time by the total amount of syllables uttered. Pauses are defined as
segments of recording without speech in them, usually lasting more than 200 ms
(or other thresholds). Note that we did not include intensity-based measures, because
we deemed them unreliable, due to their strong dependence on distance from the
microphone, movements, and so forth (Barsties & De Bodt, 2015).
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Hypothesis 3 (H3). We expect the acoustic
profile of autistic voice to be affected by individ-
ual differences (vs. a unique profile of autistic
voice). In particular, we expect effects to be dif-
ferent by gender, and age. For instance, a mega-
analytic study (Fusaroli et al., 2018) found that
the acoustic markers of ASD were particularly
pronounced in older individuals and in the more
numerous male group. We also expect acoustic
features to relate to clinical features of ASD as
measured by ADOS sub-scores. In particular,
increased pitch mean and variability, and pause
number will relate to increased sub-scores, plau-
sibly Social and Communication.

In a more exploratory fashion, we comparatively
assess the use of meta-analytically informed and skeptical
priors on model quality (assessed via model comparison)
and estimates.

MATERIALS AND METHODS

Participants and recordings

We collected two Danish and US English datasets involv-
ing 77 autistic participants and 72 NT participants, all with
verbal and non-verbal cognitive function within a typical
range (see Table 1 for details). Each participant recorded
several audios, for a total of 1074 unique recordings. The
Danish dataset included 29 autistic participants (335 record-
ings) and 38 NT participants (427 recordings), retelling
stories (Memory for stories, Reynolds & Voress, 2007) and
freely describing short videos (Abell et al., 2000). The US
English dataset included 48 autistic (178 recordings) and
34 NT (134 recordings) participants, retelling stories
(Grossman et al., 2013). The recordings had been collected
for other purposes and their content—but not acoustics—

analyzed in published studies (Cantio et al., 2016;
Grossman et al., 2013).

Note that the two samples are only roughly matched.
While cognitive function and clinical features as measured
by ADOS are largely overlapping, US participants are a
bit older than Danish ones, present a larger variability in
age and a slightly higher number of female participants.
Further, the language spoken, while in both cases a Ger-
manic one, is obviously different. In particular, Danish is
often characterized as an atypical language with strong
reduction in consonant pronunciation (Trecca et al.,
2021), although no systematic comparison with US
English has been performed to our knowledge. These dif-
ferences are not an issue for the following analyses, given
that the effects are tested separately in the two corpora. It
is crucial to assess whether so called vocal markers of
ASD can generalize across corpora with different charac-
teristics and explore how these differences might matter
for the generalizability of the findings.

Note also that the number of autistic girls in the sam-
ple is limited: Seven in total, in line with the higher detec-
tion of autism in males. Therefore, the estimates are to be
taken with much caution. Since future studies might
include our estimates in a cumulative approach, we nev-
ertheless report them.

All recordings were pre-processed to remove back-
ground noise and interviewer speech when present.
Thirty-two acoustic measures were extracted (see Tables 2
and 3). A full description of the process and features is
available in the Supporting Information S1.

Statistical modeling

Updated meta-analytic estimates

Effect size estimates from previous studies were retrieved
from metavoice.au.dk, a community augmented meta-

TABLE 1 Participant characteristics

Language Group Age (months) Males/total N ADOS—Mean (SD) Cognitive function

US English NT 160.24 (36.57) 27/38 NA Verbal IQ 114.58 (16.91)
Nonverbal IQ 113.84 (9.71)

US English ASD 152.83 (36.46) 24/29 Total: 13.94 (5.80)
Communication 3.42 (1.71)
Social 8.71 (2.57)
Repetitive 1.59 (2.03)

Verbal 107.55 (19.15)
Nonverbal 104.64 (15.49)

Danish NT 130.53 (15.79) 31/34 NA Verbal 108.59 (18.22)
Nonverbal 102.57 (16.30)

Danish ASD 132.00 (17.13) 46/48 Total: 11.31 (3.03)
Communication 2.85 (1.43)
Social 7.04 (1.84)
Repetitive 0.15 (0.46)

Verbal 100.72 (19.02)
Nonverbal 103.14 (18.62)

Note: Clinical symptoms severity was measures using the autism diagnostic observation schedule—Generic (Lord et al., 2008). Cognitive functions were measured using
the WISC-III for the Danish data (Kaufman, 1994), and the Leiter-R (nonverbal IQ, Roid & Miller, 1997) and the Peabody picture vocabulary test (receptive vocabulary,
Dunn & Dunn, 2007).
Abbreviations: ASD, autism spectrum disorder; NT, neurotypical.
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analysis website, which integrated and updated the esti-
mates collected by Fusaroli et al. (2017, 2018). We re-ran
the meta-analysis on this updated dataset in accordance
with the original specifications. In other words, we used a
multilevel model with standardized effect sizes (Cohen’s

d) as outcome and accounting for varying effects by arti-
cle and sample (some articles re-used the same partici-
pants). This yielded meta-analytic effect sizes (including
measures of uncertainty) for pitch mean and variability,
average speech rate, syllable and pause average duration,

TABLE 2 Estimated standardized mean differences (ASD-NT) for the six acoustic measures present in the meta-analysis, as estimated separately
by the meta-analytically informed and the skeptical models

Group (ASD-NT) Group � biological sex (M–F) Group � age

Pitch median Informed model weight = 0.79

MA 0.38 (0.16 0.59) NA NA

Skeptical DK 0.12 (�0.08 0.32) ER = 5.26 0.32 (�0.02 0.64) ER = 14.62 �0.01 (�0.06 0.03) ER = 2.34 ER01 = 9.73

Skeptical US 0.36 (0.12 0.61) ER = 221 �0.07 (�0.46 0.33) ER = 1.56 ER01 = 1.81 �0.02 (�0.06 0.02) ER = 4.13

Informed DK 0.27 (0.14 0.41) ER > 1000 NA NA

Informed US 0.43 (0.28 0.59) ER > 1000 NA NA

Pitch variability Informed model weight = 0.97

MA 0.48 (0.26 0.7) NA NA

Skeptical DK 0.31 (0.16 0.46) ER > 1000 0.28 (�0.06 0.61) ER = 11.05 0.01 (�0.04 0.05) ER = 1.45 ER01 = 10.29

Skeptical US 0.02 (�0.2 0.23) ER = 1.3 ER01 = 2.32 �0.23 (�0.66 0.2) ER = 4.41 �0.02 (�0.06 0.01) ER = 6.02

Informed DK 0.41 (0.29 0.52) ER > 1000 NA NA

Informed US 0.28 (0.14 0.43) ER > 1000 NA NA

Speech rate Informed model weight = 1

MA 0.02 (�0.27 0.31) NA NA

Skeptical DK 0.03 (�0.14 0.2) ER = 1.55 ER01 = 2.71 �0.02 (�0.35 0.29) ER = 1.19 ER01 = 2.15 0 (�0.04 0.04) ER = 1.12 ER01 = 11.28

Skeptical US �0.11 (�0.28 0.05) ER = 6.74 0.24 (�0.21 0.69) ER = 4.12 �0.02 (�0.06 0.01) ER = 8.71

Informed DK 0.03 (�0.11 0.17) ER = 1.75 ER01 = 1.62 NA NA

Informed US �0.09 (�0.22 0.06) ER = 5.06 NA NA

Syllable length Informed model weight = 0.98

MA 0.06 (�0.63 0.76) NA NA

Skeptical DK �0.02 (�0.14 0.09) ER = 1.64 ER01 = 4.19 �0.03 (�0.3 0.25) ER = 1.37 ER01 = 2.38 0 (�0.04 0.04) ER = 1.14 ER01 = 13.57

Skeptical US 0 (�0.21 0.22) ER = 1 ER01 = 2.16 �0.04 (�0.52 0.45) ER = 1.28 ER01 = 1.48 0 (�0.03 0.04) ER = 1.1 ER01 = 13.81

Informed DK �0.02 (�0.13 0.09) ER = 1.6 ER01 = 5.01 NA NA

Informed US 0.01 (�0.22 0.23) ER = 1.07 ER01 = 2.58 NA NA

Pause number Informed model weight = 1

MA 0.4 (0.01 0.78) NA NA

Skeptical DK �0.11 (�0.24 0.01) ER = 14.04 �0.05 (�0.34 0.22) ER = 1.6 ER01 = 2.55 �0.01 (�0.05 0.03) ER = 2.36 ER01 = 11.55

Skeptical US �0.17 (�0.35 0) ER = 17.6 0.39 (�0.05 0.83) ER = 12 �0.02 (�0.05 0.01) ER = 4.66

Informed DK �0.04 (�0.17 0.08) ER = 2.41 ER01 = 15.95 NA NA

Informed US �0.09 (�0.26 0.09) ER = 4.18 NA NA

Pause length Informed model weight = 1

MA 0.21 (�0.09 0.5) NA NA

Skeptical DK 0.21 (0.03 0.39) ER = 34.09 0.15 (�0.19 0.47) ER = 3.4 0.01 (�0.04 0.05) ER = 2.05 ER01 = 10.31

Skeptical US 0.27 (0.11 0.43) ER = 332 �0.12 (�0.55 0.31) ER = 1.96 ER01 = 1.4 0 (�0.03 0.03) ER = 1.17 ER01 = 16.13

Informed DK 0.24 (0.08 0.39) ER = 153 NA NA

Informed US 0.26 (0.12 0.4) ER = 999 NA NA

Note: The first column reports the main effect of the diagnostic group (across sex and age), respectively from the meta-analysis (MA), for the skeptical Danish and US
English models, and for the informed ones. The second column indicates the interaction between the effect of the diagnostic group and biological sex (male–female), that
is, the difference in effect of group between the male and the female participants. The third column reports the interaction between the effect of diagnostic group and age,
that is, the change in effect size as age increases by 1 SD. ER indicates the evidence ratio for the difference, ER01 the evidence ratio for the null effect. Bold text indicates
findings for which there is more than anecdotal evidence (evidence ratio above 3).
Abbreviations: ASD, autism spectrum disorder; NT, neurotypical.
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and number of pauses per second. The estimates are pres-
ented in Table 2 and the script is provided on the OSF
repository (https://osf.io/gnhw4/?view_only=3e51ee6253
d548eb836af23ed9d01d73s).

Differences by diagnostic group

For ease of comparison with the standardized effect sizes
used in the meta-analysis, we standardized our acoustic
features, that is, we centered them on the mean, and
divided them by the SD.4 To assess whether autistic par-
ticipants differed from NT participants, we ran Bayesian
multilevel Gaussian regression models with the standard-
ized acoustic feature as outcome, group (ASD vs. NT)
and language (Danish vs. US English) as predictors (sep-
arately assessing the effects within language), and varying
effects by participant (separately by language and group).
We contrasted the results achieved with meta-analytically
informed priors—when available—and weakly skeptical
priors—that is, with expectations of no or small effects,
thereby conservatively regularizing the inference and
reducing overfitting. We were interested in both whether
the effects would be robust to the change of priors, and
whether the informed or the skeptical priors would lead
to more robust inference, that is, would lead to lower esti-
mated out-of-sample error. To assess the import of using
meta-analytic and skeptical priors, we report the same
model estimates for both models. Further, we adopted a
Leave-One-Out model comparison framework estimating
the model’s out-of-sample performance, in other words,
estimating the ability of the model to generalize to new
data (Yao et al., 2018). We then calculated their relative
stacking weight based on Leave-One-Out Information
criteria, assessing the probability of each model to be bet-
ter than the other on a 0–1 scale. When one model gets a
stacking weight of 1, that model is reliably better than the
other. When the scores are closer to 0.5, both models pro-
vide valuable information in predicting new data and
should be both considered for future work. This procedure
informs us as to whether adding information from previous
findings in our statistical models enabled us to create more
robust models, with greater estimated chances of our find-
ings replicating in new studies. We reported the estimated
difference by group in terms of mean difference separately
by language (that is, by corpus), 95% compatibility inter-
vals (CIs, indicating the probable range of difference,
assuming the model is correct and the data representative
of the population) and evidence ratio (ER, evidence in
favor of the effect observed against alternative hypotheses).
When ER was weak (below 3, that is, less than three times
as much evidence for the effect as for alternative hypothe-
ses), we also calculated the ER in favor of the null

hypothesis. Note that given the standardization of the out-
come variables, the effect size is equivalent to Cohen’s d,
that is, is expressed in units of SDs.

To evaluate the potential role of individual differ-
ences in biological sex (male vs. female) and age, we built
additional models, one per each suggested moderator
interacting with group separately in the two languages.
Age was modeled in terms of years and scaled. We
reported the model estimates for the interaction, includ-
ing CIs and ERs.

Further details on the implementation and on the
priors used are presented in the Supporting Information
S2 and S5. Note also that we report additional analyses
in the Supporting Information to assess the robustness of
the findings: we repeat all analyses on audio segments of
6 s to control for recoding length, see Tables S4–S6. The
results generally support our main findings and we report
in the manuscript only qualitative divergences.

Relations to clinical features

To analyze the relation of acoustic and clinical features
(ADOS total, Communication, Social Interaction, Repet-
itive Behaviors scores) we built multilevel Bayesian linear
regression models with the acoustic feature as outcome
(rescaled on a 0–1 scale) and clinical features as ordinal
predictors, on the ASD group only, separately by lan-
guage and with varying effects by participant (separately
by language). We selected only features that were
highlighted by the meta-analysis, as associated with
group differences (pitch median and variability, speech
rate, pause number and length), or with clinical features
(jitter, Harmonic to Noise Ratio).

We otherwise followed the procedure described in the
previous paragraphs. Further details on the implementa-
tion and priors are available in the Supporting Informa-
tion S3 and S5. Note that given the rescaling of the
outcome and predictor variables, the effect size is on the
scale of Pearson’s r.

The data analysis scripts are available in the article
repository at Open Science Foundation (https://osf.io/
gnhw4/?view_only=3e51ee6253d548eb836af23ed9d01d73),
and further details on the software employed is available
in the Supporting Information S5.

RESULTS

Analysis of group differences in acoustic features

Acoustic features with meta-analytic results

The detailed results and comparison to the meta-analysis
are reported in Table 2, and Figure 1. Using informed
meta-analytic priors yielded bigger differences than using
skeptical ones, however they were still smaller than in the

4Some features could have been modeled following non-Gaussian distributions
(e.g., lognormal for pause length). However, keeping a Gaussian likelihood
function enables an easier comparison with the meta-analytic results, as previous
studies assumed Gaussian distribution of errors.
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meta-analysis. Interestingly all informed models per-
formed better than the skeptical ones. In other words,
including information from previous studies often made
our statistical inference more robust and able to general-
ize to new data (LOO based stacking weights for
informed models always above 0.75). This suggests that a
more consistent practice of “posterior passing” (Brand
et al., 2019), that is, of using previous findings as priors
in current studies, would lead to more robust inferences.
The results generally supported our broader hypotheses,
if not the more specific details. We mostly replicated
meta-analytic findings across both datasets (H1). Autistic
participants across languages tend to use higher pitch, as
well as fewer and longer pauses, and showed no differ-
ences in syllable length. Perhaps unsurprisingly, the effect
sizes in our data are often smaller than in the meta-
analysis (H1a), except for length of pauses. We also
observe evidence for the importance of individual and lin-
guistic differences (H3). Only in US English did we see
robust evidence of slower speech rate and only in Danish
did we see increased pitch variability. While previous
studies (Fusaroli et al., 2018) suggested that vocal
markers of ASD would be stronger in younger boys, we
observe a more complex picture: biological sex and age
interact with the effects, but inconsistently so across lan-
guages. Further given the small number of female partici-
pants involved, much caution should be exercised.

The findings are maintained if using only 6-s clips of
the audio recordings, with the exception of syllable length
becoming credibly longer in ASD in both languages and

the advantage of using meta-analytic priors being
reduced (see Supporting Information S9 and Figure S3).

Novel acoustic features

The detailed results for each of the 26 features are
reported in Table S2. We observe small to moderate
(<0.4) but reliable differences by group in the voice qual-
ity features within each dataset, which are comparable to
those in prosodic features (partially corroborating H2).
As in more traditional acoustic features we see that
including biological sex and age of the participants does
in some cases affect the group differences (corroborating
H3). However, strikingly, only three acoustic measures
present the same small but reliable difference between the
diagnostic group across the two languages (questioning
the generalizability of H2). In particular, autistic partici-
pants have higher normalized amplitude quotient (NAQ,
effect sizes of 0.1 and 0.11), Maxima Dispersion Quotient
(MDQ, effect sizes of 0.07 and 0.06) and creak (effect
sizes of 0.13 and 0.15).

Relation with clinical features

Detailed results are presented in Table 3. While we can
observe several reliable relations between acoustic and
clinical features, the only consistent one across lan-
guages is speech rate (the slower the speech, the more

F I GURE 1 Comparing meta-analysis, skeptical expectations and results. Each panel presents a separate acoustic measure, with the x-axis
corresponding to standardized mean differences (autism spectrum disorder-neurotypical [ASD-NT]) equivalent to Hedges’ g, with estimates above
0 indicating higher scores for autistic participants. The first row in each panel presents our prior expectation for effects: the skeptical expectations in
red and the meta-analytic findings in blue. The second row represents the estimated difference (posterior) for Danish, and the third for US English.
Estimated differences are in red for models using weakly skeptical priors (reported in the manuscript) and —for comparison—in blue for models
using informed priors (reported in the Supporting Information)
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severe the clinical feature), and to a lesser degree Har-
monic to Noise Ratio (the lower, the more severe the
clinical feature). Many correlations are small (<0.2% or
4% of the variance), but some are moderate (between
0.4 and 0.54, that is, between 16% and 29% of the vari-
ance). The findings are analogous, albeit with smaller
effect size in the 6-s audio recordings (see Supporting
Information S9).

DISCUSSION

In this work we aimed at building the foundations for a
cumulative yet self-correcting approach to the study of
prosody in ASD. Relying on a previous systematic review
and an updated meta-analysis of the field, we hypothe-
sized that: H1) meta-analytic findings would replicate,
potentially with smaller effect sizes; H2) voice quality
measures would yield differences in the two groups

analogous in size to those from prosodic measures; H3)
individual demographic, clinical and linguistic differences
would play an important role, defying the idea of a
unique acoustic profile of ASD. We also assessed whether
the use of informed priors would improve the generaliz-
ability of the statistical findings, and—in the Supporting
Information—whether the acoustic features showed obvi-
ous redundancies, allowing to reduce their numbers. In
the following discussion we will consider how the findings
bear on the hypotheses and explorations, highlight the
limitations of the current study, and discuss further the
cumulative yet self-correcting approach we propose.

Traditionally, given a previous finding, a replication
of that finding is the production of similar results (same
direction of effects and comparable effect sizes) in a new
study following analogous experimental and/or statisti-
cal procedures (Goodman et al., 2016), while not finding
the same pattern of results indicates a failed replication.
Further, if the replication attempts to apply the results

TABLE 3 Estimated standardized relation between acoustic and clinical features

ADOS total β (95% CIs)
ADOS communication
β (95% CIs) ADOS social β (95% CIs)

ADOS stereotyped
β (95% CIs)

Pitch median DK 0.09 (�0.39 0.62) ER = 1.51
ER01 = 29.51

0.09 (�0.2 0.4) ER = 2.4
ER01 = 13.51

0.06 (�0.37 0.52) ER = 1.41
ER01 = 17.71

�0.05 (�1.37 1.23)
ER = 1.18 ER01 = 3.4

Pitch median US 0.17 (�0.17 0.52) ER = 3.68 0.04 (�0.2 0.26) ER = 1.67
ER01 = 17.41

�0.16 (�0.42 0.12) ER = 5.42 0.14 (�0.08 0.37) ER = 5.54

Pitch IQR DK 0.02 (�0.3 0.32) ER = 1.26
ER01 = 48.74

0.15 (�0.03 0.38) ER = 12.51 �0.05 (�0.32 0.21) ER = 1.57
ER01 = 28.93

�0.1 (�1.21 0.88)
ER = 1.41 ER01 = 5.62

Pitch IQR US 0.17 (�0.09 0.45) ER = 5.83 0 (�0.15 0.14) ER = 1.02
ER01 = 28.49

0.03 (�0.14 0.19) ER = 1.6
ER01 = 37

0.06 (�0.1 0.24) ER = 2.64
ER01 = 16.66

Speech rate DK �0.18 (�0.42 0.01)
ER = 14.87

�0.17 (�0.35–0.04)
ER = 87.89

�0.1 (�0.32 0.06) ER = 5.12 0.34 (�0.15 1.3) ER = 5.47

Speech rate US �0.07 (�0.2 0.05) ER = 4.6 �0.03 (�0.1 0.03) ER = 4.38 �0.05 (�0.12 0.02) ER = 8.66 �0.04 (�0.11 0.04)
ER = 3.77

Pause number DK 0.13 (�0.04 0.32) ER = 10.11 0.07 (�0.04 0.2) ER = 6.18 0.16 (0.02 0.37) ER = 33.19 �0.47 (�1.4–0.03)
ER = 30.5

Pause number US �0.01 (�0.23 0.21) ER = 1.27
ER01 = 70.95

�0.03 (�0.14 0.08) ER = 1.97
ER01 = 32.94

�0.06 (�0.2 0.07) ER = 3.51 0 (�0.13 0.13) ER = 1.06
ER01 = 24.89

Pause length DK �0.08 (�0.27 0.1) ER = 3.4 �0.07 (�0.21 0.05) ER = 5.32 �0.03 (�0.19 0.13) ER = 1.68
ER01 = 48.94

0.18 (�0.53 1.16) ER = 2.27
ER01 = 6.77

Pause length US 0.02 (�0.07 0.11) ER = 1.87
ER01 = 148.46

0.03 (�0.02 0.08) ER = 5.16 �0.04 (�0.1 0.02) ER = 6.26 0 (�0.05 0.06) ER = 1.07
ER01 = 57.12

Jitter DK 0.04 (�0.16 0.26) ER = 1.73
ER01 = 68.93

0.05 (�0.09 0.2) ER = 2.53
ER01 = 28.63

0.04 (�0.13 0.23) ER = 1.83
ER01 = 43.24

�0.2 (�1.08 0.43)
ER = 2.51 ER01 = 7.1

Jitter US �0.06 (�0.15 0.04) ER = 4.97 �0.02 (�0.08 0.04) ER = 2.67
ER01 = 55.02

0.02 (�0.05 0.09) ER = 2.07
ER01 = 88.23

�0.01 (�0.07 0.05)
ER = 1.48
ER01 = 50.57

HNR median DK �0.3 (�0.73 0.09) ER = 9.39 �0.24 (�0.54 0) ER = 18.32 �0.26 (�0.65 0.05)
ER = 10.11

0.54 (�0.33 1.93) ER = 5.88

HNR median US �0.27 (�0.6 0.06) ER = 10.24 �0.01 (�0.14 0.11) ER = 1.27
ER01 = 34.04

�0.1 (�0.27 0.05) ER = 6.17 �0.21 (�0.53 0.06)
ER = 6.84

HNR IQR DK 0.4 (�0.03 0.92) ER = 16.17 0.21 (�0.09 0.59) ER = 7.47 0.37 (0.03 0.85) ER = 27.78 �0.5 (�1.93 0.51) ER = 4.08

HNR IQR US �0.14 (�0.49 0.24) ER = 2.94
ER01 = 30.82

�0.1 (�0.28 0.09) ER = 4.31 �0.27 (�0.47–0.08)
ER = 113.29

�0.15 (�0.35 0.06)
ER = 7.55

Abbreviations: ER, evidence ratio for the difference; ER01, evidence ratio for the null effect.
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of a study “to populations with for instance a different
language, age distribution, or other demographic and
clinical characteristics” (Vandenbroucke et al., 2007),
we call this a generalization. Most previous findings and
current results did not replicate in a generalizable fash-
ion. We found a minimal (characterized by only few fea-
tures) acoustic profile of ASD across Danish and US
English: Autistic participants tended to use higher pitch,
fewer but longer pauses, and increased NAQ, MDQ,
and creak compared to NT participants. Given the het-
erogeneity of previous studies and uncertainty about
publication bias reported in the meta-analysis, even
these minimal cross-linguistically generalized replica-
tions are far from trivial. However, equally important is
the focus that our findings put on linguistic, demo-
graphic, and clinical differences undermining the idea of
a strong acoustic profile of ASD. There are many
language-specific effects (e.g., speech rate being slower
in ASD only for US English), and demographic differ-
ences (sex and age) affect even the cross-linguistically
reliable acoustic features of ASD, albeit not in the same
directions across languages and acoustic features. Addi-
tionally, there were intriguing moderate relations
between acoustic measures and clinical symptoms.
However, only speech rate and—to a lower extent—
HNR show the same cross-linguistic relation: the slower
the speech, and the lower the HNR, the more severe the
clinical feature. Even more tellingly, these features are
not consistently different between diagnostic groups.

The findings thus do not lead to sweeping statements
on vocal markers of ASD and the role of age- and sex-
related differences, except that there might be no one
general extensive acoustic profile of ASD. Systematic
individual variations (sex, age, language, clinical fea-
tures) should be always taken into account and we sus-
pect that multiple clusters of acoustic profiles in ASD
could be identified, all leading to the more general clini-
cal descriptions of vocal atypicalities in ASD. However,
to explore this idea and its potential clinical applica-
tions, we need to construct even larger cross-linguistic
datasets systematically covering the heterogeneity in
clinical features—and beyond—of autistic people, and
more explicit normative modeling of individual variabil-
ity (Marquand et al., 2019).

Our exploration of feature reduction methods
(Supporting Information S4 and S7) did not yield any clear
finding. Future directions should explicitly include machine
learning techniques targeting diagnostic group differences
and relevant clinical features (Rybner et al., 2021).

More generally our study provides a concrete case of
cumulative yet self-critical scientific approach, which
might extend beyond the specific phenomenon investi-
gated. The need to systematically rely on previous litera-
ture (e.g., via systematic reviews and meta-analyses) has
been argued to stand in contrast with the potential
unreliability of the current literature due to questionable
research practices, publication bias and other issues

(Bavel et al., 2016; Benjamin et al., 2018; Fabrigar
et al., 2020; Kenny & Judd, 2019; Kvarven et al., 2020;
Loken & Gelman, 2017; Maxwell et al., 2015;
Oberauer & Lewandowsky, 2019; Yarkoni, 2020). In this
study, we suggest a way to account for both sides. We rely
on a previous systematic review to design the current
study, and on the (updated) meta-analytic findings to set
up priors for our analyses. At the same time, we critically
attempt to replicate previous findings and compare statis-
tical inferences relying on meta-analytical priors with
inferences relying on skeptical priors. Estimations of out-
of-sample errors indicate that including the meta-analytic
findings in our analyses actually improves the generaliz-
ability of our inferences. This direct way of producing
cumulative results via “posterior passing” (Brand
et al., 2019) thus seems quite promising. There are of
course some cautions to consider. The first is that esti-
mated out-of-sample errors assume that new recordings
would belong to the same population described by the
current sample of recordings. This means that it is not a
reliable estimate of actual error when assessing, for exam-
ple, new recordings in a different language or a popula-
tion with different clinical profiles. Further, our results
indicate that the advantage of using meta-analytic priors
is not as clear when analyzing more controlled samples
(clips of 6 s analyzed in the Supporting Information). This
suggests that the usefulness of posterior passing, especially
when the meta-analysis suggests the presence of noise and
heterogeneity, might be lessened in the presence of more
controlled measurements, and possibly larger datasets.
Nevertheless, even in these conditions, we argue that com-
paratively applying meta-analytically informed and skep-
tical priors might provide a check of the inferential
robustness (do the results agree across the two models?)
and a measure of how the current study relates to the pre-
vious state of the art of the literature (does it fall within
the range of the previous studies, or does it suggest that
our current study is saying something different?).

CONCLUSIONS

We set out to more cumulatively advance the study of
acoustic markers in ASD, applying and assessing the
recommendations and findings in a recent systematic
review and meta-analysis. Across a relatively large
cross-linguistic corpus, we identified a minimal acoustic
profile of ASD (higher pitch, fewer and longer pauses,
higher NAQ, MDQ, and creak). However, we also
highlight that individual differences in language, sex,
age and clinical features relate to systematic variations
in the acoustic properties of speech. This suggests that
the search for a population-level marker might be naive
and more fine-grained approaches are needed. We
released the data and scripts used in the article to facili-
tate such future cumulative advances. The current study
critically showcases a cumulative yet self-correcting
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approach, which we advocate should be more
commonly used.
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